

Recent Advances in the Synthesis and Properties of Functionalized Fluoropolymers as Engineering Materials G.Kostov

Department of Organic Chemical Technologies, Prof. As. Zlatarov University of Burgas, Bulgaria; e-mail: gkostov@btu.bg

VII National Conference on Chemistry, 26-29 May 2011, Sofia, Bulgaria

CONTENTS

1-Introduction. Objectives

2-Functionalized fluoropolymers for plastic optical fibres

3-Original fluorinated surfactants potentially non-bioaccumulable

4-Functional fluoropolymers for fuel cell membranes

5-Conclusions and perspectives

1. FEATURES / BENEFITS / ADVANTAGES of F POLYMERS

LOW REFRACTIVE INDEX

> OPTICAL FIBRES AND COATINGS

> LUBRICITY, RELEASE

VERY LOW SURFACE TENSION

> SPECIALITY SURFACTANTS & FIRE FIGHTING AGENTS

VERY STRONG ORGANIC ACIDS

CATALYSTS & PROTON EXCHANGE MEMBRANES

HIGH OIL, WATER AND SOIL REPELLENCY

> TEXTILES, LEATHER, PAPER, WOOD, GLASS, CONCRETE, STONE, METALS PROTECTION

HIGH CHEMICAL, THERMAL, AND OXIDATIVE STABILITY

> PROTECTIVE COATINGS

INSULATION

> WIRE AND CABLE INDUSTRIES

CONTENTS

1-Introduction. Objectives

2-Functionalized fluoropolymers for plastic optical fibres

3-Original fluorinated surfactants potentially nonbioaccumulable.

4-Functional fluoropolymers for fuel cell membranes

5-Conclusions and perspectives

2.1. Advantages of polymer optical materials over conventional glasses

- High optical transparency at transmission wavelengths
- Potential to tune their optical properties by tailoring the molecular structure
- Lightweight
- Flexibility even at large diameters
- Good processability
- Easy handling
- Low cost

2.2.Applications of POWs

- Short-haul communication links
- > Data systems in aircrafts, automobiles
- Local area networks
- > Inter- and intra- office network systems

2.3.Disadvantages of POWs

POWs reveal optical losses much higher than silica PMMA (visible region) – 100 dB/km

Silica fibres – 0.3 dB/km

- > Transmission on short distances
- > Develop partial crystallinity and low Tg
- > Organic polymers are prone to oxidative degradation

SOLUTION

Substitution of F (or D) atoms for H atoms

- low overtone band strength
- less scattering
- low n_D

Lower attenuation

Amorphous fluorinated polymers

Cytop TM(Asahi Glass)

Teflon® AF(Du Pont)

2.4. OBJECTIVES

1. Synthesis of novel amorphous hydroxy functional fluoropolymer resins and their acrylation. Photocrosslinking and optical materials

2. New perfluorovinyl dioxolane monomers and copolymer and optical materials

2.5. STRATEGY OF SYNTHESIS OF OPTICAL POLYMERS

Requirements for optical polymers

- Optical transparency in the visible and NIR regions amorphous with high Tg; n_D –1.4-1.5; Td >150°C
- Good processability to fibers, films and tapes (Mn=2000-4000 g/mol)
- Photocrosslinkable (preferably acrylic and fluorinated resins)
- Homogenous network with good mechanical properties

2.6. CTFE/VCA/hydroxy VE copolymers

Reactive diluent(s)

Amorphous crosslinked network

Main characteristics of CTFE/VCA copolymers

Table 1: Selected monomer/copolymer compositions of CTFE/VCA copolymers and their main characteristics.

CTFE in monom.	CTFE ^a in	Yield	$\mathbf{M}_{\mathbf{n}}^{\mathbf{d}}$	PDI ^b	Tg	T _{d10}	N _{C-H} /cm ³	n _D
mixture	copolym							
(mol %)		(wt %)	(g.mol ⁻¹)		(°C)	(°C)	(10-3)	(23°C)
	(mol %)							
80	60.3	64.0	2800	2.2	70	274	5.4	1.4379
70	51.8	64.1	2500	2.0	90	295	8.4	1.4358
60	45.9	65.8	2250	2.5	100	289	11.5	1.4357
50	39.8	70.6	2000	2.5	110	246	14.8	1.4459
40	34.6	72.2	18 00	2.0	120	254	16.2	-

Polar organic solvents : acetone, THF, EtOAc, DMF, DMSO

Solubility:

Reactive diluents : HDDA, NVP, and the couple HDDA/ATRIFE

2.6.2. STUDY OF CTFE/VCA/HFP TERPOLYMERIZATION

- Objective: to improve the solubility in reactive diluents and fluorine content in copolymers
- **>** Reaction conditions:

CTFE/VCA = 0.67 = const.

HFP in monomer mixture – from 5 to 20 mol.% (2.1 to 10 mol.% in copolymer composition – ¹⁹F NMR

- Characterization of CTFE/VCA/HFP terpolymers
 - solubility in reactive diluents
 - Tg ~ 120°C;Td ~ 250°C

2.7.ACRYLATION OF HYDROXY FUNCTIONALIZED CO-POLYMERS

Scheme 6 : Acrylation of –OH functionalized CTFE/VCA co-polymers

2.8. Characterization of UV-cured materials

> DMA analysis

Tg of acrylated CTFE/VCA/HBVE compositions ~90°C

E – modulus : 1 GPa at 20°C; 50 MPa at 120°C

 $T^{air}_{d10} \sim 200 - 220^{\circ}C$

DSC analysis 2 Tg of acrylated CTFE/VCA-CH₂OH compositions ~ 100–105°C T^{air}_{d10} ~ 230–240°C

2.9. CTFE/Perfluorovinyl dioxolane co-polymers for optical fiber

2.9.1. Monomer synthesis

Figure 7. Chemical structures of substituted perfluoro-2-methylene–1,3-dioxolane derivatives.

Collaboration with Prof. Y. Okamoto and Dr. F. Mikes, Brooklyn Polytechnic, USA.

2.9.2. Co-polymerization of perfluorovinyl dioxolane (F-Ox) with different fluorinated comonomers M₂ (CTFE, PPVE, PMVE and VDF)

Mikes, F., Teng, H., Kostov, G., Ameduri, B., Koike, Y., Okamoto, Y., Journal of Polym. Sci., Part A: Polymer Chemistry, 2009, 47, (23) 6571-6578.

Co-polymerization of perfluorovinyl dioxolane(F-Ox) with different fluorinated co-monomers M₂ (CTFE, PPVE, PMVE and VDF)

Run #	Monomer M2	Monom the fe (mol F-Ox	ers in eed %) M2	Copoly by m (m F-Ox	vm. comps. icroanal. iol.%) M2	Copolyn by N (mo F-Ox	n. comps. NMR ol %) M2	Conv (wt.%)	Tg (°C)	Td,10 (°C)
1	F ₂ C=CFCl	20	80	35	65	37.4	62.6	63	105	322
2	F ₂ C=CFCl	40	60	62	38	61.5	38.5	70	148	354
3	F ₂ C=CFOC ₃ F	64	36	87.4	12.6	85.2	14.8	82	144	342
4	F ₂ C=CFOCF ₃	21	79	50.7	49.3	52.8	47.2	74	154	359
5	F ₂ C=CH ₂	14	86	38.2	61.8	37.8	62.2	65	108	370
6	F ₂ C=CH ₂	35	65	58.4	41.6	57.9	42.1	67	138	356

 $n_{\rm R} < 1.35$

2.10. CONCLUSIONS AND PERSPECTIVES

- 1. Binary (CTFE/VCA) and ternary (CTFE/VCA/HFP, CTFE/VCA/HVE) oligomers in good yield and high Tg were synthesized.
- 2. Successful acrylation of hydroxy functionalized cooligomers
- 3. Photocrosslinking → original cured fluoroacrylated materials of low n_D, high Tg &Td and good mechanical properties
- 4. Novel functionalized copolymers of CTFE with perfluorinated dioxolanes with excellent optical properties

Suitable for waveguides applications

CONTENTS

- **1-Introduction.** Objectives
- **2-Functionalized fluoropolymers for plastic optical fibres**
- **3-Original fluorinated surfactants potentially non-bioaccumulable.**
- **4-Functional fluoropolymers for fuel cell membranes**
- **5-Conclusions and perspectives**

3.1. Advantages of fluorinated surfactants

Better surface active and better hydrophobic compared to hydrogenated analogues Lower interfacial tension and CMC Excellent chemical and thermal stability Oleophobicity: oil and fat repellants Useful in many industrial fields: paints, coatings, detergents, firefighting foams, pharmaceuticals, etc.

Traditional commercial fluorosurfactants :Long fluorocarbon chain $C_6 < R_F < C_{12}$ their derivativesPerfluorooctane sulphonate (PFOS)Perfluooctanoic acid (PFOA)

3.2. DRAWBACKS OF FLUORINATED SURFACTANTS

- **Bioaccumulable**
- **⊗** Toxic and persistent
- **Wide-spread in the environment**

- 3M company suggested perfluorinated chain $\leq C_4$
- Low bioconcentration factor
- Low toxicity
- Still high product performance

3.3. Synthesis of different end products as fluorinated surfactants

General strategy : synthesis of fluorinated surfactants with fluorinated linear block $C_i \le 4$

25

Table 1. Properties of synthesized fluorinated surfactants

Surfactant	Appearance	% Fluoro alkyl	10% decomp. temperature ^a (°C)	Tg and melting point ^b (°C)
(CF ₃) ₂ CF(TFP)(CH ₂) ₃ SCH ₂ CO ₂ (PEO)CH ₃	yellow visc.liq.	24	200	Tg< 0 ⁰C
(CF ₃) ₂ CF(TFP)CH ₂ CH ₂ N ⁺ C ₅ H ₅ ,I ⁻	yellow solid	45	250	145
(CF ₃) ₂ CF(TFP)CH ₂ CH ₂ N ⁺ (CH ₃) ₃ ,I ⁻	yellow solid	47	230	175

- a) TGA : Thermal Analyst Instrument 51 ; heating rate 10°C/min; temperature range of 30-580°C; air flow of 60 mL/min
- b) DSC : Perkin-Elmer Pyris 1; heating rate 20°C/min.

G. Kostov et al. USP 0027349 (2007)

Table 2. Chemical resistance and solubility of synthesized fluorinated surfactants

Surfactant A – $(CF_3)_2CF(TFP)(CH_2)_3SCH_2CO_2(PEO)CH_3$; Surfactant B – $(CF_3)_2CF(TFP)CH_2CH_2N^+C_5H_5,I^-$; Surfactant C – $(CF_3)_2CF(TFP)CH_2CH_2N^+(CH_3)3,I^-$

Conditions		Weight losses (%)				
		Surfactant A	Surfactant A Surfactant B			
(1) Base-aci	id resistance					
98 % H ₂ SO	25 °C; 7 days	0.0	<1.2	0.0		
60% HNO	3 25 °C; 7 days	-	>40.0	<20		
37% HCl	25 °C; 7 days	0.0	>15.0	0.0		
40% NaOI	H 25 °C; 7 days	0.0	0.0	0.0		
<u>(2) Solubilit</u>	ty in selected solvents	S	olubility (g/100mL)		
Water	25°C; 72 hrs	>10	>10	>10		
Methanol	25°C; 72 hrs	>10	>10	>10		
Diethyl eth	er 25°C; 72 hrs	<1	<1	<1		
Benzene	25°C; 72 hrs	<2	<2	<2		
Acetone	25°C; 72 hrs	<10	<10	<10		

Conclusions:

The samples remained almost unaffected in 98 % H₂SO₄ and 40 % NaOH but not stable in 60 % HNO₃ at RT Soluble in H₂O, CH₃OH but not in (C₂H₅)₂O and C₆H₆

Scheme 2. Radical telomerization of 3,3,3-trifluoropropene (TFP) with diethyl hydrogenophosphonate followed by hydrolysis.

Figure 3. Surface tensions and conductimetries vs. concentration of poly(VDF-co-TFP)-b-oligo(VA) surfactant (black) compared to those of PFOA (white)

CONTENTS

- **1-Introduction.** Objectives
- **2-Functionalized fluoropolymers for plastic optical fibres**
- **3-Original fluorinated Surfactants potentially** non-bioaccumulable
- **4-Functional fluoropolymers for fuel cell membranes**
- **5-Conclusions and perspectives**

4.1. FUEL CELL MEMBRANES <u>Main characteristics of the</u> <u>membrane</u>

 To separate oxygen from hydrogen
 To ínsure a good protoníc conductívíty
 To be chemically, physically and mechanically stable ín acid medía and at hígh temperatures

Reasonable cost/applications
 No electronic conductivity

 Mag = 863 X
 20μm
 EHT = 5.00 kV

 WD = 13 mm

4. 2. Fluorinated ionomers for IE membranes

Hydrogenated membranes versus fluorinated membranes

Hydrogenated membranes

⁽²⁾ Poor thermostability

⊗ Low hydrolytic stability

- ⊗ Instability to Radiations
- Non-negligible solubility in used fuels

Fluorinated membranes

③ Good thermalstability
④ Stability to hydrolysis and to acids
④ Good durability
④ Properties of super acide (-CF₂-SO₃H)
④ Good resistance to oxidation

4.2.1. SULFONYLFLUORIDE COPOLYMERS Perfluorinated ionomers

Commercially available Nafion ionomer (DuPont)

 $-(CF_{2}CF_{2})_{n}-(CF_{2}CF) - A = CF_{2}CF_{2}CF_{2}CF_{2}CF_{2} - SO_{3} - H$ $CF_{3} = CF_{3}$

Clemson-produced sulphonyl imide ionomer
 acidic proton

$$-(CF_{2}CF_{2})_{n}-(CF_{2}CF)-H$$

$$\downarrow$$

$$EW = 1075, n = 5.0$$

$$EW = 1200, n = 6.3$$

$$EW = 1470, n = 9.0$$

$$CF_{3}$$

$$D. DesMarteau$$

PEM fuel cells — Nafion[®]

A - fluorocarbon
backbone
B - interfacial zone
C - ionic clusters

Yeo and Yeager, *Modern Aspects of Electrochemistry Vol 16*, Plenum Press, New York, 1985, p.437.

4.2.2. OUR SULFOFLUORINATED MEMBRANES

•Synthesis of sulphonylfluorine co-monomer (CF₂=CFCF₂OCF₂CF₂SO₂F) –

- Du Pont technology
- Co-polymerization

 $nCF_2 = CF_2 + xCF_2 = CFCF_2OCF_2CF_2SO_2F - \frac{R}{m}$

 $\rightarrow R(CF_2CF_2)_n - (CF_2CF) - x_{|}$ CF_2O(CF_2)_SO_2F

 $r_{TFE} = 10.02 \pm 0.63$ $r_2 = 0.3 \pm 0.9$

G. Kostov et al., J. Appl. Polym. Sci., 1993, 47, 735

Table 4.2.3. Copolymerization of TFE with PPOTESF in bulk

Parameters	Samples			
	1	2	3	
TFE/PPOTESF mol ration in the feed	2.95	0.77	0.50	
(-SO ₂ F) content in the copolymer :				
IEC (meq/g)	0.39	0.72	0.77	
m ₂ (mol.%)	4.28	8.63	9.36	
Copolymer yield (wt.%)	40.8	34.3	31.3	
Melting temperature (°C)	_	282.3	287.3	
Thermal stability (°C)	_	314.0	308.0	

Fuel cell challenges: high temp operation

- DOE fuel cell cost target of \$30/kW
 - Incremental advances are not adequate
 - High risk/high payoff basic research coupled with applied programs

"...a sophisticated set of guiding principles that are based on carefully designed and executed experimental and theoretical studies." **Fuel cell cost**

Catalyst design

 Proton exchange membranes

> High temperature operation Tailored Nanostructures

- High temperature 120-200 °C
 - Eliminate complex water management systems
 - Decrease size of thermal management system
 - Reduction in quantity of Pt required (0.8 mg/cm² → 0.1 mg/cm²)

Li et al., *Chem. Mater.* 2003, *15*, 4896-4915 DOE Basic Energy Sciences Workshop on Hydrogen, Storage, Production, <u>and Use http://www.se.doc.gov/bes/reports/files/NHE_rpt.pdf</u>

Drawbacks of sulphonated membranes

MeOH crossover

Cost (\$ 400-500 / m²)

Drying from 80°C including poor performances

Search for intermediate and high temperature membranes

To replace H₂O by immobilized amphoteric solvents

Our choice: <u>nitrogenous heterocycles</u>

C. Weiser, Fuel Cells, 2004, 4, 245

Remaining challenges

• Find a useful balance between mechanical properties and glass transition temperature.

 Design membranes whose final structure enables proton conductivity suitable for fuel cell start up at 25°C as well as continuous operation at 120-150°C

Membranes combining 2 conduction mechanisms

 Use both water (T<100°C) and heterocyclic network (high T>100°C) as the proton conducting media.

Conclusions and perspectives

- The new functionalized fluoropolymers are thermally stable up to 300°C with good dual conductivity.
- Efficient methods to mechanically stabilize the conductive films have to be developed.
- Exploratory experiments combining hydrated and anhydrous conducting domains are promising and will further be developed

ACKNOWLEDGEMENTS

COMPANIES

ACADEMICS

Solvay (B) Atofina (F) MEFI (F) Chemtura (USA) PSA Peugeot Citroën (F) Prof. B. Boutevin (IAM, ENSCM, F)
Dr. Al. Rousseau (INSA de Lyon, F)
Prof. Y. Okamoto (Brooklyn Polytechnic, US)
Dr. B. Ameduri (IAM, ENSCM, F)
Prof. V. Gouverneur (Oxford Univ. GB)

THANK YOU FOR YOUR KIND ATTENTION!

